
CSCI2510 Computer Organization

Lecture 05: Program Execution

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

Reading: Chap. 2.3~2.7, 2.10, 4

mailto:mcyang@cse.cuhk.edu.hk

Outline

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing an Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stacks

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 2

Recall: Language Translation

CSCI2510 Lec05: Program Execution 3

https://gerardnico.com/code/lang/machine

https://clip2art.com/explore/Boy%20clipart%20teacher/

High-level Language

Assembly Language

Machine Language

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

TEMP = V(k);

V(k) = V(k+1);

V(k+1) = TEMP;

lw $t0, 0($2)

lw $t1, 4($2)

sw $t1, 0($2)

Sw $t0, 4($2)lw: loads a word from memory into a register

sw: saves a word from a register into RAM

0($2): treats the value of register $2 + 0 bytes as a location

4($2): treats the value of register $2 + 4 bytes as a location

0000 1001 1100 0110 1010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110

1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

C/Java
Compiler

Fortran
Compiler

MIPS Assembler

Assembly Language

• Machine instructions are represented by 0s and 1s.

 Such patterns are awkward to deal with by humans!

 We use symbolic names to represent 0/1 patterns!

• Assembly Language: a complete set of such

symbolic names and rules for their use constitutes a

programming language

– Syntax: the set of rules for using the mnemonics or

notations and for specifying complete instructions/programs

– Mnemonics: acronyms to represent instruction operations

• E.g. Load  LD, Store  ST, Add  ADD, etc.

– Notations: shorthand for registers or memory locations

• E.g. register 3  R3, a particular memory location  LOC

CSCI2510 Lec05: Program Execution 4

Assembly Language Syntax

• Three-operand Instruction:

operation dest, src1, src2

• E.g. “Add A, B, C” means “A ← [B] + [C]”

– Note: We use [X] to represent the content at location X.

• Two-operand Instruction:

operation dest, src

• E.g. “Move A, B” means “A ← [B]”

• E.g. “Add A, B” means “A ← [A] + [B]”

– Note: Operand A is like both the source and the destination.

• One-operand Instruction:

– Some machines have an register called accumulator (ACC)

• E.g. “Add B” means “ACC ← ACC + [B]”

• E.g. “Load B” means “ACC ← [B]”

• E.g. “Store B” means “B ← ACC”

CSCI2510 Lec05: Program Execution 5

Some machines may put
destination last:

operation src, dest

Outline

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing an Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stacks

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 6

Memory

Executable

Program

first instruction

Generating/Executing an Program

• Compiler: Translate a high-level language source

programs into assembly language source programs

• Assembler: Translate assembly language source

programs into object files of machine instructions

• Linker: Combine the contents of object files and library

files into one object/executable program

– Library File: Collect useful subroutines of application programs

• Loader: Load the program from disk into memory & load

the address of the first instruction into program counter

CSCI2510 Lec05: Program Execution 7

Source

File
Source

File

Object

File

Object

ProgramLinker

Library

File
Library

File

Source

File
Source

File

Source

File

High-Level

Language

Source

File
Source

File

Source

File

Assembly

Language

Loader

Disk
CPU

PC

Compiler Assembler

Outline

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing an Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stacks

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 8

CSCI2510 Lec05: Program Execution 9

• Consider a machine:

– RISC instruction set

– 32-bit word, 32-bit instruction

– Byte-addressable memory

• Given the task 𝐶=𝐴+𝐵 (Lec04)

– Implemented as C ← [A] + [B]

– Possible program segment:
• Load R2, A

• Load R3, B

• Add R4, R2, R3

• Store R4, C

Instruction Execution & Sequencing (1/3)

data for the program

data for the program

data for the program

CSCI2510 Lec05: Program Execution 10

• Assume the 4 instructions

are loaded in successive

memory locations:

– Starting at location i

– The 2nd, 3rd, 4th instructions

are at i + 4, i + 8, and i + 12

• Each instruction is 4 bytes

• To execute this program

– The program counter (PC)

register in the processor

should be loaded with the

address of the 1st instruction.

• PC: holds the address of the

next instruction to be executed.

Instruction Execution & Sequencing (2/3)

four-

instruction

program

segment

data for the program

data for the program

data for the program

CSCI2510 Lec05: Program Execution 11

• CPU fetch and execute

instruction indicated by PC

– Instruction Fetch:

• IR ← [PC]

• PC = PC + 4 (32-bit word)

– Instruction Execute:

• Check Instruction Register

– IR: a register in CPU

for placing instruction

• Perform the operation

• Straight-line sequencing: Fetch and
execute instructions, one at a time,
in the order of increasing addresses

Instruction Execution & Sequencing (3/3)

four-

instruction

program

segment

data for the program

data for the program

data for the program

PC 

Class Exercise 5.1

• Consider a task of adding n num:

– The symbolic memory addresses of the

n numbers: NUM1, NUM2, …, NUMn

– The result is in memory location SUM.

• Please write the program segment to

add n num into R2.

• Answer:

CSCI2510 Lec05: Program Execution 12

Student ID:

Name:

Date:

Outline

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing an Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stacks

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 14

Branching: Implementing a Loop (1/2)

• The body of the loop:

– Start: at location LOOP

– Body: the repeated task

• E.g. “Load-Add” instructions

– End: at Branch_if_[R2]>0

• Assume that

– n is stored in memory location N.

– R2 represents the number of
times (i.e. n) the loop is executed.

• Within the body of the loop,

Subtract R2, R2, #1

– Decreasing the contents of R2

by 1 each time through the loop.
CSCI2510 Lec05: Program Execution 15

LOOP

LOOP

N n

Branching: Implementing a Loop (2/2)

• How to “jump back” to LOOP?

– Branch: loads a new memory

address (called branch target)

into the PC.

– Conditional Branch: causes

a branch only if a specified

condition is satisfied.

• Branch_if_[R2]>0 LOOP

– A conditional branch

instruction that causes

branch to location LOOP.

– Condition: If the contents of

R2 are greater than zero.

CSCI2510 Lec05: Program Execution 16

LOOP

LOOP

N

if [R2] <= 0

if [R2] > 0

n

Class Exercise 5.2

• The program for adding a list of n numbers can be

derived as follows. In which, the indirect addressing

is used to access successive numbers in the list.

• Please fill in the blank comment fields below:

CSCI2510 Lec05: Program Execution 17

LABEL OPCODE OPERAND COMMENT

Load R2, N Load the size of the list.

Clear R3 Initialize sum to 0.

Move R4, #NUM1

LOOP: Load R5, (R4)

Add R3, R3, R5

Add R4, R4, #4

Subtract R2, R2, #1

Branch_if_[R2]>0 LOOP

Store R3, SUM Store the final sum.

Outline

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing an Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stacks

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 19

N (negative) Set to 1 if the result is negative; otherwise, cleared to 0

Z (zero) Set to 1 if the result is 0; otherwise; otherwise, cleared to 0

V (overflow) Set to 1 if arithmetic overflow occurs; otherwise, cleared to 0

C (carry) Set to 1 if a carry-out occurs; otherwise, cleared to 0

Condition Codes (1/2)

• Operations performed by the processor typically

generate number results of positive, negative, or zero.

– E.g. Subtract R2, R2, #1 (in the Loop program)

• Condition Code Flags: keep the information about

the results for subsequent conditional branch (if any).

– Condition Code Register (or Status Register): groups

and stores these flags in a special register in the processor.

• Four common flags:

CSCI2510 Lec05: Program Execution 20

N (negative) Set to 1 if the result is negative; otherwise, cleared to 0

Z (zero) Set to 1 if the result is 0; otherwise; otherwise, cleared to 0

V (overflow) Set to 1 if arithmetic overflow occurs; otherwise, cleared to 0

C (carry) Set to 1 if a carry-out occurs; otherwise, cleared to 0

Condition Codes (2/2)

• Consider the Conditional Branch example:

– If condition codes are used, the branch could be simplified:

Branch_if_[R2]>0 LOOP  Branch>0 LOOP

without indicating the register involved in the test.

– The new instruction causes a branch if neither N nor Z is 1.

• The Subtract instruction would cause both N and Z flags to be

cleared to 0 if R2 is still greater than 0.

CSCI2510 Lec05: Program Execution 21

Class Exercise 5.3

CSCI2510 Lec05: Program Execution 22

• Given two 4-bit registers R1 and R2 storing signed

integers in 2’s-complement format. Please specify the
condition flags that will be affected by Add R2, R1:

if 𝑅1 = 2 10 = 0010 2, 𝑅2 = –5 10 = 1011 2

Answer: __________________________________

if 𝑅1 = 2 10 = 0010 2, 𝑅2 = –2 10 = 1110 2

Answer: __________________________________

if 𝑅1 = 7 10 = 0111 2, 𝑅2 = 1 10 = 0001 2

Answer: __________________________________

if 𝑅1 = 5 10 = 0101 2, 𝑅2 = −2 10 = 1110 2

Answer: __________________________________

Recall: Signed Integer Representation

CSCI2510 Lec02: Number and Character Representation 23

B Values Represented

b3b2b1b0 Sign-and-magnitude 1’s-complement 2’s-complement

0 1 1 1 + 7 + 7 + 7

0 1 1 0 + 6 + 6 + 6

0 1 0 1 + 5 + 5 + 5

0 1 0 0 + 4 + 4 + 4

0 0 1 1 + 3 + 3 + 3

0 0 1 0 + 2 + 2 + 2

0 0 0 1 + 1 + 1 + 1

0 0 0 0 + 0 + 0 + 0

1 0 0 0 - 0 - 7 - 8

1 0 0 1 - 1 - 6 - 7

1 0 1 0 - 2 - 5 - 6

1 0 1 1 - 3 - 4 - 5

1 1 0 0 - 4 - 3 - 4

1 1 0 1 - 5 - 2 - 3

1 1 1 0 - 6 - 1 - 2

1 1 1 1 - 7 - 0 - 1

Outline

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing an Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stacks

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 25

Branch vs. Subroutine

• Branch:

– Jumping to a particular instruction by loading

its memory address into PC.

• It’s also common to perform a particular

task many times on different values.

• Subroutine/Function Call

– Subroutine: a block of instructions that will

be executed each time when calling.

– Subroutine/Function Call: when a program

branches to (back from) a subroutine.

• Call: the instruction performing the branch.

• Return: the instruction branching back to the caller.

– “Stack” is essential for subroutine calls.
CSCI2510 Lec05: Program Execution 26

…

LOOP: LOOP

Body

Branch

…

…

Call

…

FUNC: FUNC

Body

Return

Outline

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing an Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stacks

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 27

Stacks

• Stack is a list of data elements (usually words):

– Elements can only be removed at one end of the list.

• This end is called the top, and the other end is called the bottom.

• Examples: a stack of coins, plates on a tray, a pile of books, etc.

– Push: Placing a new item at the top end of a stack

– Pop: Removing the top item from a stack

– Stack is often called LIFO or FILO stack:

• Last-In-First-Out (LIFO): The last item is the first one to be removed.

• First-In-Last-Out (FILO): The first item is the last one to be removed.

CSCI2510 Lec05: Program Execution 28

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

top

bottom

• Modern processors usually provide native support to

stacks (called processor stack).

Stack

(TOP)
SP

Processor Stacks (1/2)

CSCI2510 Lec05: Program Execution 29

– A processor stack can be

implemented by using a portion

of the main memory.

• Data elements of a stack occupy

successive memory locations.

• The first element is placed in

location BOTTOM (larger address).

• The new elements are pushed

onto the TOP of the stack.

– Stack Pointer (SP): a special

processor register to keep track

of the address of the TOP item

of processor stack.

Memory

Processor Stacks (2/2)

• Given a stack of word data items, and consider a

byte-addressable memory with a 32-bit word:

CSCI2510 Lec05: Program Execution 30

Stack

(TOP)

– Push a item in Rj onto the stack:
Subtract SP, SP, #4

Store Rj, (SP)

• The Subtract instruction first subtracts 4 from

the contents of SP and places the result in SP.

• The Store instruction then places the content of

Rj onto the stack.

– Pop the top item into Rj
Load Rj, (SP)

Add SP, SP, #4

• The Load instruction first loads the top value from

the stack into register Rj

• The Add instruction then increments the stack

pointer by 4.

SP

Questions: How to use Autoincrement and Autodecrement addressing modes to simplify?

Class Exercise 5.4

CSCI2510 Lec05: Program Execution 31

(a) Before Push/Pop (b) After Push (c) After Pop

X X

• Fill in the contents of the stack and the register Rj,

denote the location of SP, and specify the range of

the stack, after the push/pop operation is performed:

Outline

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing an Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stacks

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 33

Revisit: Subroutine

• Recall:

– When a program branches to a subroutine

we say that it is calling the subroutine.

– After a subroutine calling, the subroutine is

said to return to the program that called it.

• Continuing immediately after the instruction that

called the subroutine.

CSCI2510 Lec05: Program Execution 34

…

Call

…

FUNC: FUNC

Body

Return

• However, the subroutine may be called from different

places in a calling program.

• Thus, provision must be made for returning to the

appropriate location.

– That is, the contents of the PC must be saved by the Call

instruction to enable correct return to the calling program.

• Subroutine Linkage method: the way makes it

possible to call and return from subroutines.

– The simplest method: saving the return address in a special

processor register called the link register.

• With the help of link register,

– The Call instruction can be implemented as a special

branch instruction:

• Store the contents of the PC in the link register.

• Branch to the target address specified by the Call instruction.

– The Return instruction can be implemented as a special

branch instruction as well:

• Branch to the address contained in the link register.

Subroutine Linkage

CSCI2510 Lec05: Program Execution 35

Example of Subroutine Linkage

CSCI2510 Lec05: Program Execution 36

204

1000

204

Store PC into the

link register.

Branch to the

target address

specified by Call
Branch back to

the address

contained in the

link register.

Question: Is one link register enough for all cases?

Outline

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing an Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stacks

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 37

Subroutine Nesting (1/3)

• Subroutine Nesting: One subroutine calls another

subroutine or itself (i.e. recursion).

– If the return address of the second call is also stored in the

link register, the first return address will be lost … ERROR!

– Subroutine nesting can be carried out to any depth …

CSCI2510 Lec05: Program Execution 38

https://slideplayer.com/slide/7603076/

Subroutine Nesting (2/3)

• Observation: The return address needed for the first

return is the last one generated in the nested calls.

– That is, return addresses are generated and used in a

last-in–first-out (LIFO) order.

CSCI2510 Lec05: Program Execution 39

Subroutine Nesting (3/3)

• Processor stack is useful to store subroutine linkage:

– The Call instruction:

• Store the contents of the PC in the link register

 Push the contents of the PC to the processor stack

• Branch to the target address specified by the Call instruction.

 (Unchanged)

– The Return instruction:

• Branch to the address contained in the link register

 Branch to the address popped out from the processor stack

CSCI2510 Lec05: Program Execution 40

top

bottom

main

func1()

Outline

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing an Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stacks

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 41

Parameter Passing

• Parameter Passing: The exchange of information

between a calling program and a subroutine.

– When calling a subroutine, a program must provide the

parameters (i.e. operands or their addresses) to be used.

– Later, the subroutine returns other parameters, which are

the results of the computation.

CSCI2510 Lec05: Program Execution 42

http://coder-tronics.com/c-programming-functions-pt1/

Parameter Passing via Registers

CSCI2510 Lec05: Program Execution 43

• The simplest way is placing parameters in registers.

• Recall the program for adding a list of numbers.

• The program can be implemented as a subroutine with
– R2 & R4 are used to pass the size of list & the address of the first num,

– R3 is used to pass back the sum computed by the subroutine.

n

Memory

R4

R3

R3 R3

Calling

Program

Subroutine

R2

Parameter Passing on Stack

• What if there are more parameters than registers?

• What if the subroutine calls itself (recursion)?

• The processor stack, again, provides a good scheme

to pass an arbitrary number of parameters.

CSCI2510 Lec05: Program Execution 44

• What we can pass via stack?

– We can push all parameters to

be computed onto the stack.

– We can push the contents of

all “to-be-used” registers onto

the stack.

– We can also push the

computed sum before the

return to the calling program.

• What kind of parameters can we pass?

• Passing by Value

– The actual number N is passed by an immediate value.

• Passing by Reference (more powerful, be careful!)

– Instead of passing the actual values in the list, the routine

passes the starting address (i.e. reference) of the NUM list.

CSCI2510 Lec05: Program Execution 45

Parameter Passing by Value / Reference

https://www.mathwarehouse.com/programming/passing

-by-value-vs-by-reference-visual-explanation.php

Summary

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing an Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stacks

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 46

